a2 United States Patent

Merrells

US009485332B2

US 9,485,332 B2
Nov. 1, 2016

(10) Patent No.:
45) Date of Patent:

(54)

(71)
(72)
(73)

")

@

(22)

(65)

(60)

(1)

(52)

(58)

OFFLOADING EXECUTION OF A PORTION
OF A CLIENT-SIDE WEB APPLICATION TO
A SERVER

Applicant: Sencha, Inc., Redwood City, CA (US)
Inventor: John Merrells, Menlo Park, CA (US)
Assignee: Sencha, Inc., Redwood City, CA (US)

Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 443 days.

Appl. No.: 14/189,811
Filed: Feb. 25, 2014

Prior Publication Data

US 2014/0280509 Al Sep. 18, 2014

Related U.S. Application Data

Provisional application No. 61/788,889, filed on Mar.
15, 2013.

Int. CL.

GO6F 15/16 (2006.01)

HO4L 29/06 (2006.01)

HO4L 29/08 (2006.01)

U.S. CL

CPC ... HO04L 67/42 (2013.01); HO4L 67/02

(2013.01); HO4L 67/40 (2013.01)

Field of Classification Search
CPC ... HO4L 29/08072; H04L 29/06; HO4L
29/0809

205A
Developer
Device

206N
Developer
Web App.

205N
Developer
Device

206N
Developer
Web App

Data Network

USPC 709/203, 220, 224, 227, 228, 229
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS
2010/0048292 Al*

2/2010 Anderson GO7F 17/3227

463/25
2010/0149091 Al* 6/2010 Kotaccccooevvinnine GO6T 11/00
345/156
2013/0104100 Al1* 42013 Mueller GO6F 9/44
717/106

* cited by examiner

Primary Examiner — Richard G Keehn

Assistant Examiner — Van Kim T Nguyen

(74) Attorney, Agent, or Firm — Hickman Palermo
Becker Bingham LLLLP; Adam C. Stone

(57) ABSTRACT

Offloading execution of a portion of a client-side Web
application to a server. In one embodiment, for example, a
computer-implemented includes identifying a function to-
be-offloaded in a client-side scripting language file; gener-
ating an offloaded function based on the function to-be-
offloaded; replacing, in the scripting language file, the body
of the function to-be-offloaded with client RPC stub which,
when executed by an end-user computing device as a result
of a call to the function to-be-offloaded, causes one or more
arguments passed into the function to-be-offloaded to be
marshalled and sent to a server in one or more network
messages.

24 Claims, 8 Drawing Sheets

207A
End-User
Device

208A

Modified
Web App.

207N
End-User

Device

208N
Modified
Web App.

Deployment Server System

104
208A 208N
Modified | ® ® @ [Modified
Web App. Web App.

200A 209N
Offioaded | ® » @ | Offloaded
Function Function

US 9,485,332 B2

Sheet 1 of 8

Nov. 1, 2016

U.S. Patent

Jusiio
NcOl

WolsAS JanIes
JswAo|daq

¥0T

Jusiig
dc0l

HOMISN ejed
101

Jusio
V0l

001

) E

JaNIBS
NEOT

ETNELS
dcol

IEYNEIS
veor

US 9,485,332 B2

Sheet 2 of 8

Nov. 1, 2016

U.S. Patent

uonoun4
pspeolo
N60C

uonouny
PSpeollO
V60¢

‘ddy gam
PAUIPOW
NS0

wa)sAg Janag uswAojdaq
o

‘ddy gem
PAUIPON
v80¢

‘ddy gop
psuipol
NB0Z

301A8(
Jasn-pug
NZ0¢

"ddy gam
PAYIPON
V802

801A8(]
Jasn-pug
Y.0¢

YJOMISN Ejed
101

ddy gam
JadopasQ
N90¢C

301A8(]
Jadojenaq
NG0C

‘ddy gam
JadojpasQ

N90¢

801ne(]
JadojpasQ
v&0e

US 9,485,332 B2

Sheet 3 of 8

Nov. 1, 2016

U.S. Patent

8l __:n_/

LIE cm:n_/

91¢
(s)1eneg uonnoaxg

uondun4 papeojlo

>

A

gle
(shenteg
Aioysoday uonoung

pepeoo

¢

y1¢

FOT Wa)sAg JoA19g uswhoidag

(s)isniag peojdn

A

€1 SUnssy

\\l

Y

/ 212 Odd

10¢
(s)eo1naQq J8sN-puz

¢ 'Old

012 umo_%u\\\

)14
(s)aoineq sadojersq

US 9,485,332 B2

Sheet 4 of 8

Nov. 1, 2016

U.S. Patent

NGZF Juswa[3 82in0g

VG2 Juswa|g 99inos

¥Z¥ Apog

NEZF I91oweled

NOZY ell4 18y0

Y0ct ell4 18uo

NBTT 2|14 ebenbue Bunduog

VCZT Je1oweled

CCt Jsynuap|

l¢y uopouny

l¢y uonouny

\ []
\ [
[]

VTI¢Y uonoung

V61T 9|14 abenbue Bupduog

VBIF 2|14 eb6enbue bunduog

70z 'ddy gapn JedojeasQ

¥ "Old

US 9,485,332 B2

Sheet 5 of 8

Nov. 1, 2016

U.S. Patent

NOZY 8ll4 180

82T aniS Ody Jusld

¥¢v Apog

NCZF Je1eweled

VT Jejoweled

¢V SBYRusp|

VTG uonound pauipojy

NZZG uonound "poi

N
[]

VO0C? @li4 18y0

VTG uonoun4 "poj

N9zG @i abenbue unduog "pojy

L¢y uonouny

Y926 l14 ebenbueT bupduos “pojy

L¢y uooung

NBT¥ 9|14 eb6enbue bunduog

V95 9|14 8b6enbueq Bunduog

G 'Ol

V617 9)14 abenbueq Bunduog

B0¢ "ddy qapm pauIpoly

U.S. Patent Nov. 1, 2016 Sheet 6 of 8 US 9,485,332 B2

FIG. 6

Offloaded Function 209

[dentifier 629

Parameter 630A

Parameter 630N

Body 631

Source Element 425A

Source Element 425N

Dep. Function(s) 632

US 9,485,332 B2

Sheet 7 of 8

Nov. 1, 2016

U.S. Patent

I 20pa) HOMAN

BCZ waisAg bunesado

0FZ qms Ody Jeneg

60¢ uonoun4 pepeoio

T¥Z Mows)y

F0T wayshg Jenias uswAhojdsqg

L9l

TET 90BUa)U| YIOMBN

Y

9r7 wa)sAg bunesado

!

i

TE7 Jasmolg o

BZG qMg Ody usl)

! i

125 uonound pauipop

' 1

FE7 uonound Jajjed

B0¢ ‘ddv gom Pon

7 Aloway

702 291A8(Jas)-pul

US 9,485,332 B2

Sheet 8 of 8

Nov. 1, 2016

U.S. Patent

¥28
1SOH

MHJOMLIN
o017

L13NH3LNI

828

0c8
d3AY3S

JOV4H3LNI
NOILYIINNIWINOD

¥08
d0SS300dd

208
sng
018 808 908
3301A3d AHOWIN
JOVHOLS NOH NIV

\7%

TOHLNOD
d0sdnd

N 718
V| 301A30 LNdNI

—N] 718

Av1dSId

8 'Ol

US 9,485,332 B2

1
OFFLOADING EXECUTION OF A PORTION
OF A CLIENT-SIDE WEB APPLICATION TO
A SERVER

PRIORITY CLAIM

This application claims the benefit of Provisional Appln.
61/788,889, entitled “OFFLOADING EXECUTION OF A
PORTION OF A CLIENT-SIDE WEB APPLICATION TO
A SERVER?”, filed Mar. 15, 2013, the entire contents of
which is hereby incorporated by reference as if fully set forth
herein, under 35 U.S.C. §119(e).

TECHNICAL FIELD

The present invention relates to Web applications and,
more specifically, to a system and method for offloading
execution of a portion of a client-side Web application to a
server.

BACKGROUND

The first Web applications were largely server-based with
little or no functionality implemented by client-side script-
ing. Transitions between application states were mainly
accomplished with a request and response round-trip over a
network between an end-user computing device and a server
device. A Web browser executing on the end-user device
would send, to the server device, a Hypertext Transfer
Protocol (HTTP) request specifying a Web address (e.g., a
URL) that identified the next user interface state (e.g., a new
Web page). In response, the server device would send, back
to the end-user device, a HTTP response including Hyper-
text Markup Language (HTML) content of the requested
user interface state. The Web browser would then update a
user interface (e.g., a Web page window) displayed at the
end-user computing device based on the received HTML
content.

Over time, with the increasing computing power of end-
user computing devices and the wide availability of wired
and wireless broadband Internet connections, more and
more Web application functionality is now being executed
by end-user devices. This shift in processing from server to
client is facilitated by the ubiquity of Web browser software
that supports Internet standards such Hypertext Markup
Language (HTML), Cascading Style Sheets (CSS), Exten-
sible Markup Language (XML), and other standards.

As more and more Web application functionality moves
from server to client, a whole new set of challenges face
developers of Web applications: functionality that was pre-
viously only executed by server devices is now being
downloaded to and executed by end-user devices in the form
of client-side scripting language instructions. Typically, the
client-side scripting language is based on an edition of the
European Computer Manufacturers Association (ECMA)-
262 scripting language standard. The ECMA-262 standard is
generally referred to in the industry as “Javascript”. How-
ever, particular implementations of the ECMA-262 standard
may be referred to by other names such a “Jscript”, “Action-
Script”, “ECMAScript”, etc. The portion of a Web applica-
tion implemented in a client-side scripting language is
referred to herein as a “client-side Web application”. A
client-side Web application typically is downloaded to and
executed by end-user computing devices with the aid of Web
browser software executing on the end-user computing
devices. A client-side Web application executing on an
end-user computing device may communicate over a data

15

20

25

30

40

45

2

network, with the aid of the Web browser, with one or more
servers that implement server-side Web application func-
tionality such as, for example, accessing a back-end data-
base.

A particular set of challenges facing developers of client-
side Web applications involves implementing client-side
Web application functionality that requires use of sensitive
information that should not be downloaded to or stored at
end-user devices. Such functionality includes, for example,
accessing a third-party online service that requires a devel-
oper key or other information used by the third-party service
to authenticate the developer. For various reasons, develop-
ers would prefer to keep such authentication information
private to themselves and the third-party and not accessible
to end-users of the client-side Web application. In addition
to protecting sensitive information, there may be other
reasons (e.g., performance) why developers would not want
certain client-side Web application functionality executed by
end-user devices. Consequently, a need arises for a tech-
nique that provides offloading execution of a portion of a
client-side Web application to a server.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention is illustrated by way of example
and not by way of limitation, in the figures of the accom-
panying drawings and in which like reference numerals refer
to similar elements and in which:

FIG. 1 is a block diagram of a network system incorpo-
rating a deployment server system, according to some
embodiments of the invention;

FIG. 2 is a block diagram of a network system incorpo-
rating a deployment server system, according to some
embodiments of the present invention;

FIG. 3 is a block diagram of a network system incorpo-
rating a deployment server system, according to some
embodiments of the present invention;

FIG. 4 is a block diagram of a developer client-side Web
application, according to some embodiments of the present
invention;

FIG. 5 is a block diagram of a modified client-side Web
application, according to some embodiments of the present
invention;

FIG. 6 is a block diagram of an offloaded function,
according to some embodiments of the present invention;

FIG. 7 is a block diagram of a remote procedure call
process, according to some embodiments of the present
invention;

FIG. 8 is a block diagram a computer system on which
some embodiments of the present invention may be imple-
mented.

DETAILED DESCRIPTION

A system and method for offloading a portion of a
client-side Web application to a server is described. In the
following description, for the purposes of explanation,
numerous specific details are set forth in order to provide a
thorough understanding of the present invention. It will
apparent, however, to one skilled in the art that the present
invention may be practiced without these specific details. In
other instances, well-known structures and devices are show
in block diagram form in order to avoid unnecessarily
obscuring the present invention.

Overview

Techniques are provided which address the problems
facing developers of Web applications associated with

US 9,485,332 B2

3

implementing Web application functionality with client-side
scripting language instructions that contain sensitive infor-
mation or that are otherwise not suited for execution by
end-user computing devices, for example, because of per-
formance or other reasons.

According to one aspect of the invention, a developer of
a client-side Web application uploads or otherwise provides
the client-side Web application to a client-side Web appli-
cation deployment server system. The provided client-side
Web application may include one or more client-side script-
ing language files. The client-side scripting language files
may include one or more functions that the developer wishes
to offload the execution of to the deployment server system.
To do so, the developer may “tag” each of the functions
to-be-offloaded in the client-side Web application provided
to the deployment server system.

The deployment server system produces a modified cli-
ent-side Web application from the developer-provided cli-
ent-side Web application in which the source elements of the
body of each function tagged by the developer as a function
to-be-offloaded are replaced with a client-side remote pro-
cedure call (RPC) stub. The modified client-side Web appli-
cation may be downloaded by end-user computing devices
for execution from the deployment server system. The
client-side RPC stub of the modified client-side Web appli-
cation, when executed by an end-user computing device,
marshalls any parameters passed into the function being
called and sends them to the deployment server system as
part of a remote procedure call.

When producing the modified client-side Web application
from the developer-provided client-side Web application,
the deployment server system also generates an offloaded
function for each function tagged by the developer as a
function to-be-offloaded, based on the source elements of the
function that were replaced by the client-side RPC stub.
Thus, each client-side RPC stub has a corresponding
offloaded function that includes the source elements that
were replaced by that client-side RPC stub. When the
deployment server system receives a remote procedure call
as a result of an end-user computing device executing a
client-side RPC stub, the deployment server executes the
corresponding offloaded function including the offloaded
source elements. Any return or result values are marshalled
by the deployment server and sent back to the end-user
computing device.

Advantageously, with the approach of the present inven-
tion for offloading a portion of a client-side Web application
to a server, the source elements of a function tagged by the
developer as one to-be-offloaded are not delivered to the
end-user computing devices as part of the modified client-
side Web application produced by the deployment server
system. Thus, any sensitive information of the source ele-
ments is not shared with or accessible to the users of the
end-user computing devices, thereby protecting the sensitive
information.

Further, the developer can develop the client-side Web
application with minimal modifications to the developer’s
typical development procedure. In particular, the developer
can author functions to-be-offloaded as if the source ele-
ments of the functions will be executed by end-user com-
puting devices. In other words, the developer can author
functions to-be-offloaded and functions that are not to-be-
offloaded in the same way. Responsibility for offloading the
source elements is handled by the deployment server system
and the developer can simply tag which functions of the
developer-provided client-side Web application should be

20

25

30

40

45

50

4

offloaded before providing the client-side Web application to
the deployment server system.

With this overview in mind, further details and embodi-
ments of the present invention can be understood with
reference to the drawings and the following description.
Deployment Server Network System

A block diagram of a network system 100 in which some
embodiments of the present invention may be implemented
is shown in FIG. 1. Network system 100 includes a data
network 101. The data network 101 provides communica-
tive interconnection of a plurality of computer systems, such
as client computer systems 102A-102N and server computer
systems 103A-103N. The network system 100 may include
more or less client computer systems 102 and more or less
server computer systems 103 than is shown in FIG. 1.

Data network 101 may include one or more wired and/or
one or more wireless sub-networks. The transmission media
in a wireless network is typically electromagnetic radiation,
such as radio waves or light waves. A wireless network may
include one or more local area networks (LANs), one or
more wide area networks (WANSs), or both LANs and
WANSs. The transmission media in a wired network is a wire,
such as copper wire, or the equivalent of wire, such as fiber
optic cable. A wired network may include one or more local
area networks (LANs), one or more wide area networks
(WANSs), or both LANs and WANs. One or more sub-
networks may be included in data network 101 and may
include both public networks, such as the Internet, and
private networks and may utilize any networking technology
and protocol, such as Transmission Control Protocol/Inter-
net Protocol (TCP/IP), for example.

The client computer systems 102A-102N may include any
type of electronic data processing system or communication
device. Examples of an electronic data processing system
include personal computer systems, such as desktop com-
puters or laptop computers, workstation computer systems,
server computer systems, networks of computer systems,
personal digital assistants (PDAs), wireless communications
devices, such as cellular telephones, portable personal com-
puting devices, such as smart phones or tablet computers,
etc. The client computer systems 102A-102N may connect
directly to the data network 101, or may connect indirectly
to the network 101 through one or more other networks,
gateways, firewalls, etc. Likewise, the connection to the
network 101 may be wired, wireless, or a combination of
wired and wireless. Typically, the user interface of the client
computer systems 102A-102N is a graphical user interface,
but other interfaces may be used as well.

The deployment server system 104 is also communica-
tively connected to the data network 101. The deployment
server system 104 interfaces with the data network 101 and
with multiple servers and/or clients that are connected to the
data network 101 and provides web application deployment
services to those servers and/or clients. The deployment
services provided by deployment server system 104 include
offloading execution of a portion of a client-side Web
application to the deployment server system 104.
Deployment Server System

A block diagram of a network system 200 incorporating
the deployment server system 104 of FIG. 1, according to
some embodiments of the present invention, is shown in
FIG. 2. The system 200 includes the data network 101, the
deployment server system 104, a plurality of developer
devices 205A-205N used by developers of developer client-
side Web applications 206A-206N, and a plurality of end-
user devices 207A-207N used by end-users of modified
client-side Web applications 208 A-208N.

US 9,485,332 B2

5

The developer devices 205A-205N and the end-user
devices 207A-207N may include both client and server
systems shown in FIG. 1. The deployment server system 104
uses the data network 101 to communicate with the devel-
oper devices 205A-205N and the end-user devices 207A-
207N. The network system 200 may include more or less
developer devices and more or less end-user devices than is
shown in FIG. 2.

The developers upload 210 the developer client-side Web
applications 206A-206N over data network 101 from the
developer devices 205A-205N to the deployment server
system 104. The deployment server system 104 produces the
modified client-side Web applications 208A-208N and
offloaded functions 209A-209N from the uploaded devel-
oper client-side Web applications 206 A-206N.

The end-user devices 207A-207N download 211A-211N
the modified client-side Web applications 208A-208N from
the deployment server system 104. The end-user devices
207A-207N also execute the modified client-side Web appli-
cations 208A-208N. When executing the modified client-
side Web applications 208A-208N, the end-user devices
207A-207N may make remote procedure calls 212A-212N
to the deployment server system 104 over the data network
101. In response to receiving the remote procedure calls
212A-212N from the end-user devices 207A-207N, the
deployment server system 104 execute offloaded functions
209A-209N. The deployment server system 104 returns
213A-213N, over the data network 101, any results of
executing the offloaded functions 209A-209N to the end-
user devices 207A-207N.

In a variation, the modified client-side Web applications
208A-208N produced by the deployment server system 104
are downloaded 211A-211N by the end-user devices 207 A-
207N from another server system (not shown). For example,
the end-user devices 207A-207N may download 211 A-211N
the modified client-side Web applications 208A-208N from
third-party content delivery network servers. Thus, it should
be understood that end-user devices 207A-207N are not
required to download 211A-211N the modified client-side
Web applications 208A-208N from the deployment server
system 104.

The deployment server system 104 may be implemented
by one or more computer systems such as one or more
computer systems 800 of FIG. 8. The one or more computer
systems may be housed in one or more data centers or other
hosting facilities. Functionality provided by the deployment
server 104 may be distributed, replicated, and/or partitioned,
according to the requirements of the implementation at
hand. For example, one or more computer systems of the
deployment server system 104 may be dedicated to receiv-
ing developer client-side Web applications 206 A-206N from
developer devices 205A-205N and producing modified cli-
ent-side Web applications 208A-208N and offloaded func-
tions 209A-209N, and another set or sets of one or more
computer systems may be dedicated to handling remote
procedure calls from end-user devices 207A-207N and
executing offloaded functions 209A-209N.

Example Deployment Server System Implementation

For example, FIG. 3 is a block diagram of a network
system 300 incorporating the deployment server system 104
of FIG. 1, according to some embodiments of the invention.
Here, the deployment server system 104 includes one or
more upload servers 314, one or more offloaded function
repository servers 315, and one or more offloaded function
execution servers 316.

With the deployment server system implementation of
FIG. 3, the offloaded function execution servers 316 may be

15

30

35

40

45

50

55

60

65

6

deployed at locations that are in geographic proximity to the
end-user devices 207. A remote procedure call 212 from an
end-user device 207 may be algorithmically routed to an
offloaded function execution server 316 that is best suited to
handle the remote procedure call. Which offloaded function
execution server 316 is considered to be the best suited one
may depend on a variety of factors but, in general, may be
based on some estimated cost for the offloaded function
execution server 316 to receive and handle the remote
procedure call 212 including, for example, executing the
corresponding offloaded function 209 and returning 213 any
results to the calling end-user device 207. Such costs may
take into account, as examples, network costs (e.g., network
latency between the end-user device 207 and the offloaded
function execution server 312, number of network hops
between the end-user device 207 and the offloaded function
execution server 312, etc.) and server load costs (e.g., a
number of offloaded functions 209 that the offloaded func-
tion execution server 312 is currently executing, etc.). Sig-
nificantly, with the deployment server system implementa-
tion of FIG. 3, the offloaded function execution servers 316
receiving remote procedure calls 212 can pull 318 offloaded
functions 209 from the offloaded function repository servers
315 as and when needed, in response to receiving the remote
procedure calls 212.

The developer devices 205 may be connected to the
upload servers 314 through the data network 101. Similarly,
end-user devices 207 may be connected to offloaded func-
tion execution servers 316 through the data network 101.
The upload servers 314 may be connected to the offloaded
function repository servers 315 through the data network
101 or another data network. The offloaded function execu-
tion servers 316 may be connected to the offloaded function
repository servers 315 through the data network 101 or
another data network.

The developer devices 205 upload 210 the developer
client-side Web applications 206 to the upload servers 314.
The upload servers 314 produce the modified client-side
Web applications 208 and the offloaded functions 209. In
addition, the upload servers 314 push 317 the offloaded
functions 209 to the offloaded function repository servers
315. The offloaded function repository servers 315 store the
offloaded functions 209 that are pushed 314 to them by the
upload servers 314.

The offloaded function execution servers 316 receive
remote procedure calls 212 from the end-user devices 207.
In response to receiving the remote procedure calls 212, the
offloaded function execution servers 316 consult a storage
cache local to the offloaded function execution servers 316
for offloaded functions 209 to execute. If a particular
offloaded function 209 to execute is not present in the local
storage cache, the offloaded function execution servers 316
retrieve (pull) 318 the missing offloaded function 209 from
the offloaded function repository servers 315. Once
retrieved, the offloaded function 209 is stored in the local
storage cache for subsequent remote procedure calls 212
invoking the offloaded function 209 so that the offloaded
function execution servers 316 do not need to pull 318 the
offloaded function 209 from the offloaded function reposi-
tory servers 315 for the subsequent remote procedure calls
212. Once pulled 318 from offloaded function repository
servers 315, the retrieved offloaded function 209 is then
executed by the offloaded function execution servers 316
and any results are returned 213 to the end-user device 207
that made the remote procedure call 212.

The deployment server system implementation of FIG. 3
is just one possible implementation of the deployment server

US 9,485,332 B2

7

system 104. Other implementations are possible and the
present invention is not limited to the implementation
depicted in FIG. 3 described above.

Developer Client-Side Web Application

FIG. 4 is a block diagram of a developer client-side Web
application 206 that may be uploaded to the deployment
server system 104, according to some embodiments of the
invention. The Web application 206 includes one or more
client-side scripting language files 419A-419N and possibly
one or more other files 420A-420N. A client-side scripting
language file 419 is a file that contains client-side scripting
language instructions. Typically, the scripting language
instructions are based on an edition of the European Com-
puter Manufacturers Association (ECMA)-262 scripting lan-
guage standard. The ECMA-262 standard is generally
referred to in the industry as “Javascript”. However, par-
ticular commercial implementations of the ECMA-262 stan-
dard may be referred to by other names such a “Jscript”,
“ActionScript”, “ECMAScript”, etc. It should be understood
that the present invention is not limited to any particular
edition or any particular implementation of the ECMA-262
standard. Any edition or implementation, currently existing
or developed in the future, capable of supporting the tech-
niques described herein for offloading execution of a portion
of a client-side Web application to a server may be used.

A client-side scripting language file 419 may contain just
client-side scripting language instructions and associated
information (e.g., client-side scripting language comments
and/or metadata). Alternatively, a client-side scripting lan-
guage file 419 may contain other information in addition to
client-side scripting language instructions and related infor-
mation. Such other information may include, for example,
HyperText Markup Language (“HTML”), eXtensible
HyperText Markup Language (“XHTML”), eXtensible
Markup Language (“XML”), and/or Cascading Style Sheet
(“CSS”) formatted information and/or other information for
carrying out and/or supporting client-side Web application
functionality at end-user devices 207.

In addition to client-side scripting language files 419A-
419N containing client-side scripting language instructions
and associated information, other files 420A-420N that do
not contain client-side scripting language instructions, but
that facilitate execution of the client-side scripting language
instructions by the end-user devices 207A-207N, may also
be contained in the developer client-side Web application
206. The other files 420A-420N may contain, for example,
HTML, XHTML, XML, and/or CSS formatted information
and/or other information for carrying out and/or supporting
client-side Web application functionality at end-user devices
207A-207N.

The developer client-side Web application 206 may be
uploaded 210 to the deployment server system 104 in a
variety of different formats. In one possible format, the
developer client-side Web application 206 is a compressed
file archive. For example, the Web application 206 may be
compressed as a ZIP file, a tarball, or the like. In another
possible format, the files 419 A-419N and 420A-420N of the
developer client-side Web application 206 are uploaded 210
individually to the deployment server system 104. In one
scenario, a Uniform Resource Locator (URL) or other
network location address of the developer client-side Web
application 206 is uploaded 210 to deployment server sys-
tem 104 and deployment server system 104 uses to URL or
network location address to download the developer client-
side Web application 206 from a network location (e.g., from
a Web server).

10

15

20

25

30

35

40

45

50

55

60

65

8

A scripting language file 419 may define one or more
functions 421A-421N. The definition of a function 421 in a
scripting language file 419 adheres to a known scripting
language syntax. Typically, the definition includes the use of
a scripting language keyword such as “function”. The defi-
nition may optionally specify a function identifier 422 and
optionally one or more parameters 4243A-423N. The defi-
nition includes a body 424 that optionally contains one or
more source elements 425A-425N. An example of a defi-
nition of a function 421 that may be found in a client-side
scripting language file 419 is: function add (a, b) {return
a+b};

In this example, the name of the function is “add”. The
function “add” accepts two parameters “a” and “b”. The
body of the function contains one source element which,
when executed, returns the result of applying the predefined

TR

+” operator to the argument passed into the function for the
“a” parameter and the argument passed into the function for
the “b” parameter.

According to some embodiments of the present invention,
prior to uploading a developer client-side Web application
206 to the deployment server system 104, the developer may
“tag” one or more functions 421 in the client-side scripting
language files 419 of the developer client-side Web appli-
cation 206 as “functions to-be-offloaded.” In this descrip-
tion, a “tag” is data understood by the deployment server
system 104 to designate a function declaration in a client-
side scripting language file as a function to-be-offloaded.
There are a number of different possible ways in which a
developer can tag a function 421 as one to-be-offloaded.

A function 421 in a client-side scripting language file 419
may be tagged by the developer in a variety of different
ways. In one way, the developer tags a function 421 in a
client-side scripting language file 419 using a manifest file
that is uploaded to the deployment server system 104 as part
of a developer client-side Web application 206. This kind of
tag is referred to herein as a “manifest tag” because the tag
is included in a designated manifest file. The manifest file
includes a manifest tag for each function 421 declared in the
client-side scripting language files 419A-419N of the devel-
oper client-side Web application 206 that is to-be-offloaded.
The manifest tag may include the function’s identifier 422 or
other information that may be used by the deployment server
system 104 to identify the function 421 to-be-offloaded. To
identify a function 421 based on a manifest tag, the deploy-
ment server system 104 may syntactically and semantically
analyze (i.e., parse) the client-side scripting language files
419A-419N according to a predefined scripting language
grammar. For example, for a given identifier of a function in
the manifest file, the deployment server system 104 may
parse the scripting language files 419A-419N for a definition
of a function 421 having an identifier 422 that matches or
otherwise satisfies the identifier of the manifest tag.

In another way to declare a function 421 in a scripting
language file 419 as one to-be-offloaded, the function 421 is
authored by the developer to include a tag that adheres to a
predetermined syntax (e.g., a predetermined keyword or set
of keywords). This kind of tag is referred to herein an
“embedded tag” because the tag is embedded in a client-side
scripting language file 419. More specifically, the tag is
embedded in the definition of the function 421 that is
to-be-offloaded.

An embedded tag is not limited to any particular syntax.
However, preferably, the syntax should not interfere with
regular operations of other processors of the scripting lan-
guage files 419A-419N that do not understand the syntax. In
one embodiment, an embedded tag is encoded in a client-

US 9,485,332 B2

9

side scripting language comment added to the body 424 of
the function 421 that is to-be-offloaded. By being encoded in
a client-side scripting language comment, the embedded tag
will not interfere with regular operations of other client-side
scripting language processors that do not understand the
special syntax. This is because the embedded tag will be
treated by these other processors as simply a client-side
scripting language comment. Other manners of tagging a
function 421 in a scripting language file 419 as one to-be-
offloaded may be used and the present invention is not
limited to the two ways just discussed.

Modified Client-Side Web Application

FIG. 5 is a block diagram of a modified client-side Web
application 208 produced by the deployment server system
104 from an uploaded developer client-side Web application
206, according to some embodiments of the invention. The
modified Web application 208 may contain zero or more
unmodified scripting language files 419A-419N and any
other files 420A-420N of the developer client-side Web
application 206 from which the modified Web application
208 is produced. However, the modified Web application
208 may also contain one or more modified scripting lan-
guage files 526A-526N generated by modifying scripting
language files of the developer client-side Web application
206. In particular, a scripting language file of the developer
client-side Web application 206 may be modified to include
zero or more unmodified functions 421 and one or more
modified functions 527. A modified function 527 may be
generated from a function 421 of the scripting language file
of the developer client-side Web application 206 and
includes the identifier 422, the parameters 423A-423N, and
the body of the 424 of the function 421 of the scripting
language file of the developer client-side Web application
206 in which the source elements 425A-425N of the func-
tion are replaced by a client RPC stub 528.

According to some embodiments of the invention, after
receiving an uploaded developer client-side Web application
206, the deployment server system 104 syntactically and
semantically analyzes (parses) the client-side scripting lan-
guage files 419A-419N of the uploaded developer client-
side Web application 206 to identify any functions 421
tagged by the developer as functions-to-be-offloaded. Such
identification may be based, for example, on manifest tags,
embedded tags, or a combination of manifest tags and
embedded tags, or any other suitable tagging method. For
each function to-be-offloaded, the deployment server system
104 replaces, in the client-side scripting language file 419 in
which the function 421 is defined, the source elements
425A-425N of the function body 424 with a set of client-side
scripting language instructions 528. The set of client-side
scripting language instructions that replaces the source ele-
ments 425A-425N of the function body 424 is referred to
herein as a client-side remote procedure call (RPC) stub. The
deployment server system 104 does this for each tagged
function 421 to-be-offloaded thereby producing the modified
scripting language files 526A-526N containing modified
functions 527A-527N of the modified Web application 208.

The modified Web application 208 produced by the
deployment server system 104 from a given developer Web
application 206 may be produced as a compressed file
archive such as a ZIP file or the like. Alternatively, the
modified Web application 208 may be produced as a col-
lection of individual files that includes zero or more unmodi-
fied scripting language files 419 A-419N;, one or more modi-
fied scripting language files 526A-526N, and zero or more
other files 420A-420N.

10

15

20

25

30

35

40

45

50

55

60

65

10

In one embodiment, the deployment server system 104
produces a single scripting language file from the zero or
more unmodified scripting language files 419A-419N and
the one or more modified scripting language files 526A-
526N according to a minification technique such as the one
described in related U.S. patent application Ser. No. 13/315,
918, “Techniques and Mechanisms for Web Application
Minification”, filed Dec. 9, 2011, the entire contents of
which is hereby incorporated by reference as if fully set forth
herein. In this case, the produced modified Web application
208 includes the single scripting language file but does not
include the zero or more unmodified scripting language files
419A-419N or the one or more modified scripting language
files 526 A-526N.

Offloaded Function

FIG. 6 is a block diagram of an offloaded function 209,
according to some embodiments of the present invention.
For a given developer Web application 206 designating one
or more functions 421 to-be-offloaded, the deployment
server system 104 produces a corresponding offloaded func-
tion 209 for each function 421 of the developer Web
application 206 to-be-offloaded. The corresponding
offloaded function 209 has an identifier 629, zero or more
parameters 630A-630N corresponding to the parameters
432A-423N of the corresponding function 421 to-be-of-
floaded, a body 631, the source elements 425A-425N of the
corresponding function 421 to-be-offloaded that are replaced
in the corresponding function 421 to-be-offloaded with the
client RPC stub 528, and possibly other functions(s) script-
ing language files 419A-419N of the developer Web appli-
cation 206 that the source elements 425A-425N of the
corresponding function 421 to-be-offloaded depend on.

The definition of an offloaded function 209 may be stored
in a file or a database as a set of client-side scripting
language instructions. The set of client-side scripting lan-
guage instructions can be compiled into an intermediate
executable format (e.g., bytecode) and the intermediate
executable format stored in the file or database instead of the
client-sides scripting language instructions. Compiling the
set of client-side scripting language instructions into an
intermediate executable format such as, for example, byte-
code can improve execution performance of the offloaded
function 209 when executed by the deployment server
system 104 in response to an RPC 212 from an end-user
device 207.

The dependent functions 632 that the source elements
425A-425N depend on may be determined by the deploy-
ment server system 104 when parsing the scripting language
files 419A-419N of the developer Web application 206. In
particular, the deployment server system 104 can construct
a directed graph in which the nodes of the graph represent
functions defined in the scripting language files 419A-419N
of the developer Web application 206 and a directed edge
from one node to another node in the graph represents a
function (the “caller function™) that calls another function
(the “callee function”). For a given function 421 to-be-
offloaded defined in a scripting language file 419 of the
developer Web application 206, any functions that the given
function calls will be represented as a node in the graph
representing the given function and directed edges to nodes
representing the functions that the given function calls. The
nodes representing the functions that the given function calls
may, in turn, each have directed edges to nodes representing
the functions that function calls, and so on. The set of
functions that the given functions depends on can be iden-
tified by traversing the directed graph starting at the node
representing the give function in a depth-first or breadth-first

US 9,485,332 B2

11

manner. Cycles in the graph can be detected by keeping
track of which nodes have already been visited during the
traversal. When a node, other than the given node, is first
encountered during the traversal, the definition of the func-
tion 421 corresponding to the visited node may be written to
a file or database as part 632 of the offloaded function 209
so that the function 421 is available when executing the
offloaded function 209.

In some embodiments, not all functions 421 that a given
function 421 to-be-offloaded has a direct or indirect depen-
dency on are included in the dependent functions 632 of the
offloaded function. In particular, functions 421 of the script-
ing language files 419 of the developer Web application 206
that are part of a standard or shared library of functions may
be omitted from the dependent function 632. In this case, the
deployment server system 104 may make the standard or
shared library functions available to the offloaded function
209 when the offloaded function 209 is executed by the
deployment server system 104.

RPC Process

FIG. 7 is a block diagram of a remote procedure call
process 700, according to some embodiments of the present
invention. The process 700 occurs in the context of an
end-user device 207 executing a modified Web application
208 generated by the deployment server system 104, a web
browser 735, and an operating system 736, all stored in a
memory 733 of the end-user device 207. The process 700
also occurs in the context of the deployment server system
104 executing an offloaded function 209 corresponding to a
modified function 527 of the modified Web application 208
executing on the end-user device 207. The offloaded func-
tion 209 also corresponds to a client RPC stub of the
modified Web application 208 executing on the end-user
device 207. The deployment server system 104 stores the
offloaded function 209, a server remote procedure call stub
740, and an operating system 730 in a memory 741 of the
deployment server system 104. The end-user device 207 and
the deployment server system 104 each have a network
interface, 737 and 738 respectively, for communicating with
each over a packet-switched data network such as, for
example, the Internet.

The process 700 begins when a caller function 734 of the
modified Web application 208 calls the modified function
527. The call may pass one or more arguments for one or
more parameters 423A-423N of the modified function 527.
Calling the modified function 527 causes the client RPC stub
528 to be executed. The client RPC stub 528 marshalls any
arguments passed into the modified function 527 by the
caller function 734. Marshalling includes packaging the
arguments into a data structure suitable for transport over a
data network. According to one embodiment, the client RPC
stub 528 marshalls any arguments into a Javascript Object
Notation (JSON) format (e.g., as defined in Request for
Comments (RFC) document 4627). However, other data
formats may be used such as an eXtensible Markup Lan-
guage (XML) format, as just one example.

The client RPC stub 528 invokes network transport ser-
vices provided by the web browser 735 to send any mar-
shalled arguments in a remote procedure call to the deploy-
ment server system 104. In addition to the marshalled
arguments, the remote procedure call may include an iden-
tifier of the offloaded function 209 to be called. The identifier
may be assigned by the deployment server system 104 when
generating the modified function 527 based on a correspond-
ing function 421 to-be-offloaded in the developer Web
application 206 on which the modified Web application 208
is based. The identifier may then be included in the definition

10

15

20

25

30

35

40

45

50

55

60

65

12

of the modified function 527 in the modified Web applica-
tion 208 such that the identifier is available to the client RPC
stub 528 when the modified function 527 is called. The web
browser 735 may use network transport services provided by
the operating system 736 which, in turn, sends network
packets to the deployment server system 104 through the
network interface 737. The network packets may be based
on any number of networking protocols such as the Hyper
Text Transfer Protocol (HTTP), the Transmission Control
Protocol (TCP), the Internet Protocol (IP), and others.
Among other possible information, the network packets
contain the identifier of the offloaded function 209 and any
arguments marshalled by the client RPC stub 528.

The network packets are received at the network interface
738 of the deployment server system 104 which passes the
network packets to the operating system 739 which, in turn,
passes information in the network packets to the server
remote procedure stub 740. The server remote procedure call
stub 740 unmarshalls any arguments sent in the remote
procedure call from the end-user device 207. In addition, the
server remote procedure call stub 740 determines which
offloaded function 209 to call based on the identifier in the
remote procedure call from the end-user device 207.

Once the server RPC stub 740 has determined the
offloaded function 209 to call, the server RPC stub 740 calls
(executes) the offloaded function 209, passing any unmar-
shalled arguments for the parameters 630A-630N of the
offloaded function 209, if any.

Results of execution of the offloaded function 209 are
returned to the server RPC stub 740. Such results may
include any return value from the offloaded function 209 and
any arguments passed into the offloaded function 209 that
were modified by the execution of the offloaded function
209. The server RPC stub marshalls the results and send the
results in one or more network packets back to the end-user
device 207 with the aid of the operating system 739 and the
network interface 738.

Results received at the network interface 737 of the
end-user device 207 are provided to the client RPC stub 528
through the operating system 736 and the web browser 735.
The client RPC stub 528 unmarshalls the results and uses the
unmarshalled results to set the values of arguments passed
into the modified function 527 by the caller function 734 that
were modified by the execution of the offloaded function
209. In addition, any return value of the offloaded function
209 is returned by the modified function 527 to the caller
function 734.

Hardware Overview

According to one embodiment, the techniques described
herein are implemented by one or more special-purpose
computing devices. The special-purpose computing devices
may be hard-wired to perform the techniques, or may
include digital electronic devices such as one or more
application-specific integrated circuits (ASICs) or field pro-
grammable gate arrays (FPGAs) that are persistently pro-
grammed to perform the techniques, or may include one or
more general purpose hardware processors programmed to
perform the techniques pursuant to program instructions in
firmware, memory, other storage, or a combination. Such
special-purpose computing devices may also combine cus-
tom hard-wired logic, ASICs, or FPGAs with custom pro-
gramming to accomplish the techniques. The special-pur-
pose computing devices may be desktop computer systems,
portable computer systems, handheld devices, networking
devices or any other device that incorporates hard-wired
and/or program logic to implement the techniques.

US 9,485,332 B2

13

For example, FIG. 8 is a block diagram that illustrates a
computer system 800 upon which an embodiment of the
invention may be implemented. Computer system 800
includes a bus 802 or other communication mechanism for
communicating information, and a hardware processor 804
coupled with bus 802 for processing information. Hardware
processor 804 may be, for example, a general purpose
Mmicroprocessor.

Computer system 800 also includes a main memory 806,
such as a random access memory (RAM) or other dynamic
storage device, coupled to bus 802 for storing information
and instructions to be executed by processor 804. Main
memory 806 also may be used for storing temporary vari-
ables or other intermediate information during execution of
instructions to be executed by processor 804. Such instruc-
tions, when stored in non-transitory storage media acces-
sible to processor 804, render computer system 800 into a
special-purpose machine that is customized to perform the
operations specified in the instructions.

Computer system 800 further includes a read only
memory (ROM) 808 or other static storage device coupled
to bus 802 for storing static information and instructions for
processor 804. A storage device 810, such as a magnetic
disk, optical disk, or solid-state drive is provided and
coupled to bus 802 for storing information and instructions.

Computer system 800 may be coupled via bus 802 to a
display 812, such as a cathode ray tube (CRT), for displaying
information to a computer user. An input device 814, includ-
ing alphanumeric and other keys, is coupled to bus 802 for
communicating information and command selections to
processor 804. Another type of user input device is cursor
control 816, such as a mouse, a trackball, or cursor direction
keys for communicating direction information and com-
mand selections to processor 804 and for controlling cursor
movement on display 812. This input device typically has
two degrees of freedom in two axes, a first axis (e.g., x) and
a second axis (e.g., y), that allows the device to specify
positions in a plane.

Computer system 800 may implement the techniques
described herein using customized hard-wired logic, one or
more ASICs or FPGAs, firmware and/or program logic
which in combination with the computer system causes or
programs computer system 800 to be a special-purpose
machine. According to one embodiment, the techniques
herein are performed by computer system 800 in response to
processor 804 executing one or more sequences of one or
more instructions contained in main memory 806. Such
instructions may be read into main memory 806 from
another storage medium, such as storage device 810. Execu-
tion of the sequences of instructions contained in main
memory 806 causes processor 804 to perform the process
steps described herein. In alternative embodiments, hard-
wired circuitry may be used in place of or in combination
with software instructions.

The term “storage media” as used herein refers to any
non-transitory media that store data and/or instructions that
cause a machine to operate in a specific fashion. Such
storage media may comprise non-volatile media and/or
volatile media. Non-volatile media includes, for example,
optical disks, magnetic disks, or solid-state drives, such as
storage device 810. Volatile media includes dynamic
memory, such as main memory 806. Common forms of
storage media include, for example, a floppy disk, a flexible
disk, hard disk, solid-state drive, magnetic tape, or any other
magnetic data storage medium, a CD-ROM, any other
optical data storage medium, any physical medium with

20

25

30

40

45

55

14

patterns of holes, a RAM, a PROM, and EPROM, a FLASH-
EPROM, NVRAM, any other memory chip or cartridge.

Storage media is distinct from but may be used in con-
junction with transmission media. Transmission media par-
ticipates in transferring information between storage media.
For example, transmission media includes coaxial cables,
copper wire and fiber optics, including the wires that com-
prise bus 802. Transmission media can also take the form of
acoustic or light waves, such as those generated during
radio-wave and infra-red data communications.

Various forms of media may be involved in carrying one
or more sequences of one or more instructions to processor
804 for execution. For example, the instructions may ini-
tially be carried on a magnetic disk or solid-state drive of a
remote computer. The remote computer can load the instruc-
tions into its dynamic memory and send the instructions over
a telephone line using a modem. A modem local to computer
system 800 can receive the data on the telephone line and
use an infra-red transmitter to convert the data to an infra-red
signal. An infra-red detector can receive the data carried in
the infra-red signal and appropriate circuitry can place the
data on bus 802. Bus 802 carries the data to main memory
806, from which processor 804 retrieves and executes the
instructions. The instructions received by main memory 806
may optionally be stored on storage device 810 either before
or after execution by processor 804.

Computer system 800 also includes a communication
interface 818 coupled to bus 802. Communication interface
818 provides a two-way data communication coupling to a
network link 820 that is connected to a local network 822.
For example, communication interface 818 may be an
integrated services digital network (ISDN) card, cable
modem, satellite modem, or a modem to provide a data
communication connection to a corresponding type of tele-
phone line. As another example, communication interface
818 may be a local area network (LAN) card to provide a
data communication connection to a compatible LAN. Wire-
less links may also be implemented. In any such implemen-
tation, communication interface 818 sends and receives
electrical, electromagnetic or optical signals that carry digi-
tal data streams representing various types of information.

Network link 820 typically provides data communication
through one or more networks to other data devices. For
example, network link 820 may provide a connection
through local network 822 to a host computer 824 or to data
equipment operated by an Internet Service Provider (ISP)
826. ISP 826 in turn provides data communication services
through the world wide packet data communication network
now commonly referred to as the “Internet” 828. Local
network 822 and Internet 828 both use electrical, electro-
magnetic or optical signals that carry digital data streams.
The signals through the various networks and the signals on
network link 820 and through communication interface 818,
which carry the digital data to and from computer system
800, are example forms of transmission media.

Computer system 800 can send messages and receive
data, including program code, through the network(s), net-
work link 820 and communication interface 818. In the
Internet example, a server 830 might transmit a requested
code for an application program through Internet 828, ISP
826, local network 822 and communication interface 818.

The received code may be executed by processor 804 as
it is received, and/or stored in storage device 810, or other
non-volatile storage for later execution.

EXTENSIONS AND ALTERNATIVES

In the foregoing specification, embodiments of the inven-
tion have been described with reference to numerous spe-

US 9,485,332 B2

15

cific details that may vary from implementation to imple-
mentation. The specification and drawings are, accordingly,
to be regarded in an illustrative rather than a restrictive
sense. The sole and exclusive indicator of the scope of the
invention, and what is intended by the applicants to be the
scope of the invention, is the literal and equivalent scope of
the set of claims that issue from this application, in the
specific form in which such claims issue, including any
subsequent correction.

The invention claimed is:

1. A method for offloading execution of a portion of a
client-side Web application to a server, the method compris-
ing:

receiving a client-side scripting language file;

identifying a function to-be-offloaded in the client-side

scripting language file;

wherein the function to-be-offloaded has a function body

and a list of one or more parameters;

generating an offloaded function based on the function

to-be-offloaded;

replacing, in the scripting language file, the function body

of the function to-be-offloaded with a set of client-side
scripting language instructions which, when executed
by an end-user computing device as a result of a call to
the function to-be-offloaded, cause one or more argu-
ments, corresponding to the one or more parameters
passed into the function to-be-offloaded by the call to
the function, to be marshalled and sent to a server in
one or more first network messages.

2. The method of claim 1, further comprising:

in response to receiving, at the server, the one or more first

network messages, invoking the offloaded function,
and marshaling and sending results of invoking the
offloaded function to the end-user computing device in
one or more second network messages.

3. The method of claim 1, further comprising: prior to
receiving the first network messages, serving the scripting
language file, with the function body replaced with the set of
client-side scripting language instructions, to the end-user
computing device.

4. The method of claim 1, wherein receiving the client-
side scripting language file includes receiving a compressed
file archive containing the client-side scripting language file.

5. The method of claim 1, wherein identifying the func-
tion to-be-offloaded in the client-side scripting language file
includes parsing the function body for a client-side scripting
language comment containing a predetermine keyword or a
predetermined set of keywords.

6. The method of claim 1, wherein identifying the func-
tion to-be-offloaded includes reading a manifest identifying
the function by name, and parsing the client-side scripting
language for a function with the name.

7. The method of claim 1, further comprising storing the
offloaded function in an offloaded function repository.

8. The method of claim 1, further comprising: receiving
one or more client-side scripting language files that are part
of an overall Web application; wherein generating the
offloaded function includes identifying one or more other
functions in the one or more client-side scripting language
files on which the function to-be-offloaded depends; and
generating the offloaded function based on the function
to-be-offloaded and the one or more other functions on
which the function to-be-offloaded depends.

9. One or more non-transitory computer-readable media
storing instructions which, when executed by one or more
computing devices, cause performance of a method for

15

30

40

45

55

60

16

offloading execution of a portion of a client-side Web
application to a server, the method comprising:

receiving a client-side scripting language file;

identifying a function to-be-offloaded in the client-side

scripting language file;

wherein the function to-be-offloaded has a function body

and a list of one or more parameters;

generating an offloaded function based on the function

to-be-offloaded;

replacing, in the scripting language file, the function body

of the function to-be-offloaded with a set of client-side
scripting language instructions which, when executed
by an end-user computing device as a result of a call to
the function to-be-offloaded, cause one or more argu-
ments, corresponding to the one or more parameters
passed into the function to-be-offloaded by the call to
the function, to be marshalled and sent to a server in
one or more first network messages.

10. The one or more non-transitory computer-readable
media of claim 9, the method further comprising:

in response to receiving, at the server, the one or more first

network messages, invoking the offloaded function,
and marshaling and sending results of invoking the
offloaded function to the end-user computing device in
one or more second network messages.

11. The one or more non-transitory computer-readable
media of claim 9, the method further comprising: prior to
receiving the first network messages, serving the scripting
language file, with the function body replaced with the set of
client-side scripting language instructions, to the end-user
computing device.

12. The one or more non-transitory computer-readable
media of claim 9, wherein receiving the client-side scripting
language file includes receiving a compressed file archive
containing the client-side scripting language file.

13. The one or more non-transitory computer-readable
media of claim 9, wherein identifying the function to-be-
offloaded in the client-side scripting language file includes
parsing the function body for a client-side scripting language
comment containing a predetermine keyword or a predeter-
mined set of keywords.

14. The one or more non-transitory computer-readable
media of claim 9, wherein identifying the function to-be-
offloaded includes reading a manifest identifying the func-
tion by name, and parsing the client-side scripting language
for a function with the name.

15. The one or more non-transitory computer-readable
media of claim 9, the method further comprising storing the
offloaded function in an offloaded function repository.

16. The one or more non-transitory computer-readable
media of claim 9, the method further comprising: receiving
one or more client-side scripting language files that are part
of an overall Web application; wherein generating the
offloaded function includes identifying one or more other
functions in the one or more client-side scripting language
files on which the function to-be-offloaded depends; and
generating the offloaded function based on the function
to-be-offloaded and the one or more other functions on
which the function to-be-offloaded depends.

17. A system comprising:

one or more processors;

one or more non-transitory computer readable media

storing instructions which, when executed by the one or

more processors, causes performance of a method for

offloading execution of a portion of a client-side Web

application to a server, the method comprising:
receiving a client-side scripting language file;

US 9,485,332 B2

17

identifying a function to-be-offloaded in the client-side

scripting language file;

wherein the function to-be-offloaded has a function body

and a list of one or more parameters;

generating an offloaded function based on the function

to-be-offloaded;

replacing, in the scripting language file, the function body

of the function to-be-offloaded with a set of client-side
scripting language instructions which, when executed
by an end-user computing device as a result of a call to
the function to-be-offloaded, cause one or more argu-
ments, corresponding to the one or more parameters
passed into the function to-be-offloaded by the call to
the function, to be marshalled and sent to a server in
one or more first network messages.

18. The system of claim 17, the method further compris-
ing:

in response to receiving, at the server, the one or more first

network messages, invoking the offloaded function,
and marshaling and sending results of invoking the
offloaded function to the end-user computing device in
one or more second network messages.

19. The system of claim 17, the method further compris-
ing: prior to receiving the first network messages, serving
the scripting language file, with the function body replaced
with the set of client-side scripting language instructions, to
the end-user computing device.

5

10

15

20

25

18

20. The system of claim 17, wherein receiving the client-
side scripting language file includes receiving a compressed
file archive containing the client-side scripting language file.

21. The system of claim 17, wherein identifying the
function to-be-offloaded in the client-side scripting language
file includes parsing the function body for a client-side
scripting language comment containing a predetermine key-
word or a predetermined set of keywords.

22. The system of claim 17, wherein identifying the
function to-be-offloaded includes reading a manifest identi-
fying the function by name, and parsing the client-side
scripting language for a function with the name.

23. The system of claim 17, the method further compris-
ing storing the offloaded function in an offloaded function
repository.

24. The system of claim 17, the method further compris-
ing: receiving one or more client-side scripting language
files that are part of an overall Web application; wherein
generating the offloaded function includes identifying one or
more other functions in the one or more client-side scripting
language files on which the function to-be-offloaded
depends; and generating the offloaded function based on the
function to-be-offloaded and the one or more other functions
on which the function to-be-offloaded depends.

#* #* #* #* #*

